Sparse Signal Reconstruction via Iterative Support Detection

نویسندگان

  • Yilun Wang
  • Wotao Yin
چکیده

We present a novel sparse signal reconstruction method “ISD”, aiming to achieve fast reconstruction and a reduced requirement on the number of measurements compared to the classical `1 minimization approach. ISD addresses failed reconstructions of `1 minimization due to insufficient measurements. It estimates a support set I from a current reconstruction and obtains a new reconstruction by solving the minimization problem min{ ∑ i 6∈I |xi| : Ax = b}, and it iterates these two steps for a small number of times. ISD differs from the orthogonal matching pursuit (OMP) method, as well as its variants, because (i) the index set I in ISD is not necessarily nested or increasing and (ii) the minimization problem above updates all the components of x at the same time. We generalize the Null Space Property to Truncated Null Space Property and present our analysis of ISD based on the latter. We introduce an efficient implementation of ISD, called threshold–ISD, for recovering signals with fast decaying distributions of nonzeros from compressive sensing measurements. Numerical experiments show that threshold–ISD has significant advantages over the classical `1 minimization approach, as well as two state–of–the–art algorithms: the iterative reweighted `1 minimization algorithm (IRL1) and the iterative reweighted least–squares algorithm (IRLS). MATLAB code is available for download from http://www.caam.rice.edu/~optimization/L1/ISD/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing of Sparse Signals in the Hermite Transform Basis: Analysis and Algorithm for Signal Reconstruction

—An analysis of the influence of missing samples in signals exhibiting sparsity in the Hermite transform domain is provided. Based on the statistical properties derived for the Hermite coefficients of randomly undersampled signal, the probability of success in detection of signal components support is determined. Based on the probabilistic analysis, a threshold for the detection of signal compo...

متن کامل

k-t ISD: Dynamic Cardiac Imaging Using Compressed Sensing with Iterative Support Detection

INTRODUCTION: Most existing dynamic MRI methods using compressed sensing (CS) [1-3] only exploit the prior information that the dynamic image series is sparse after a certain transform. Other prior information about the unknown MR images is usually available and should also be exploited in CS reconstruction algorithms. In this abstract, we study how to obtain and exploit the knowledge on the su...

متن کامل

Comparison of threshold-based algorithms for sparse signal recovery

Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal M...

متن کامل

8 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L1-mi...

متن کامل

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L1-mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010